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INTRODUCTION

DCHB Prior Work

Bias

= Bias in models can cause discriminatory or unethical

judgments

= Biases are attributed to choices made about training

datasets

Inappropriate data reuse
= Datasets are often reused outside their original context
= Data work is hidden, tacit, and undervalued which hinders

[ICI]9 Current Work

= Some studies have started to look at the adoption of
principles from archival studies and digital curation into ML

@ Our Goal

= ML research is currently only looking at the adoption of
these concepts in theory, given the challenges in their

translation when applied

= \We establish how ML dataset development processes can

RESEARCH QUESTIONS & METHODS

= Developed an evaluation
framework made up of
rubric and toolkit

= Rubric evaluates dataset
contents and dataset
design decisions

= Toolkit provides
application guidance for

= Assessed datasets to
evaluate current
practices of data
curation in ML dataset
development

= Analyzed areas in which
improvement was
needed

appropriate data reuse apply data curation in practice

EVALUATION FRAMEWORK

Context, purpose, motivation
Requirements

the rubric

Context awareness

Scope
Data P

Management

Context awareness demonstrates an
understanding of the subjective, non-neutral
nature, and situatedness of data.

Ethicality
Domain knowledge & data practices
Context awareness

Environmental footprint Criteria to meet minimum standard

Documentation includes a positionality
statement.

Ethicality
and
Reflexivity

Data collection
Data processing

Data annotation -
Criteria to meet standard of excellence

Suitability
Representativeness
Authenticity

Documentation adopts a reflexive approach
to dataset development. For example,

Data

1 o documentation discusses how field
Quallty Reliability . epistemologies impact assumptions,
Structured documentation methods, or framings
Data Findability ’

Accessibility
Interoperability
Reusability

CURRENT PRACTICES OF DATA CURATION

Finding 4 Documentation quality varies widely across datasets

Pipeline

Finding 6 Findings suggest no improvements
occurred over time

Finding 1 Inter-rater reliability suggests the evaluations are

consistent and reliable ‘
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KEY TAKEAWAY

Data Data Data Data Data Data
Collection Processing Annotation Collection Processing Annotation

Finding 5 Documentation often remains incomplete

Data Pipeline Data Pipeline

The creation of the D&B track shows that
dataset quality is the foundation of
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STRATEGIES TO IMPROVE DATA CURATION IN ML

Requirements Ethicality Context awareness Environmental footprint Findability Reusability
= Create purpose . : . ; ifi
statemzntz = Consider = Include « Quantify the = Assign persistent . !nclude |.dent|f|er
- D s e proportionality positionality environmental identifiers to information,
ocument initial .. dataset
: principle statements to footorint of metadata to
formulation vs. crease P avoid link rot characteristics,
he dataset datasets
t reflexivity and dataset
creation scheme provenance
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